Fix Your Semantic Cube Using This Simple Trick

Pierre Clairambault
CNRS, LIP, ENS Lyon

\[
P \parallel Q
\]

\[
\lambda \quad \text{rand()}
\]

\[
x := \text{tt}
\]

Bath (sort of), 14/04/20.
I. BACKGROUND : GAME SEMANTICS
Game Semantics by Example (Call-By-Name)

A term:

\[\lambda f^{U \to U}. \text{newref } r \text{ in } f (r := \text{tt}); !r : (U \to U) \to B \]
A term:

$$\lambda f^{\mathbb{U} \rightarrow \mathbb{U}}. \text{newref } r \text{ in } f \,(r := \text{tt}); \,!r : (\mathbb{U} \rightarrow \mathbb{U}) \rightarrow \mathbb{B}$$

A game:

```
A game

q^-

q^+

q^+

(\_\_\_\_)

(\_\_\_\_)

\text{tt}^+

\text{ff}^+

\text{ff}^+

\text{tt}^+

(\_\_\_\_)

(\_\_\_\_)

```

The strategy interpreting a term is the set of plays realized by that term.
A **term**:

$$\lambda f : U \rightarrow U. \text{newref } r \text{ in } f \ (r := \texttt{tt}); \ !r : \ (U \rightarrow U) \rightarrow B$$

A **game**

```
A game

q^- q^+ q^- q^- ()^- ()^- ()^+ tt^+ ff^+
```
A term:

\[\lambda f^{U \to U}. \text{newref } r \text{ in } f \ (r := \text{tt}); \ !r : (U \to U) \to B \]
A term:

\[\lambda f^{U \to U}. \text{newref } r \text{ in } f (r := \texttt{tt}); !r : (U \to U) \to \mathbb{B} \]
Game Semantics by Example (Call-By-Name)

A term:

\[\lambda f : U \rightarrow U. \text{newref } r \text{ in } f (r := \texttt{tt}); \,!r \quad : \quad (U \rightarrow U) \rightarrow \mathbb{B} \]

A game

\[\begin{aligned}
q^- & \quad q^+ \\
_ & \quad \text{tt}^+ \sim \text{ff}^+ \\
q^- & \quad ()^- \\
_ & \quad ()^+
\end{aligned} \]
Game Semantics by Example (Call-By-Name)

A term:

$$\lambda f : U \rightarrow U. \text{newref } r \text{ in } f (r := \text{tt}); !r : (U \rightarrow U) \rightarrow B$$

A play

$$(U \rightarrow U) \rightarrow B$$

A game

$$q^-$$

$$q^+$$

$$\text{tt}^+ \sim \text{ff}^+$$

$$(\cdot)^-$$

$$(\cdot)^+$$
Game Semantics by Example (Call-By-Name)

A term:

\[\lambda f : U \to U. \, \text{newref } r \text{ in } f \,(r := \text{tt}); \, !r \quad : \quad (U \to U) \to \mathbb{B} \]

A play

\[
(U \to U) \to \mathbb{B}
\]

A game

\[
\begin{array}{c}
q^- \\
q^+ \\
\text{tt}^+ \sim \text{ff}^+ \\
q^- \\
()^-
\end{array}
\]
A term:

$$\lambda f : U \to U. \mathsf{newref} \ r \ \mathsf{in} \ f \ (r := tt) ; ! r : (U \to U) \to B$$
Game Semantics by Example (Call-By-Name)

A term:

$$\lambda f^{U \to U}. \text{newref } r \text{ in } f \ (r := \text{tt}); \ !r \ : \ (U \to U) \to B$$

A play

$$ (U \to U) \to B$$

A game

$$q^- \quad q^+ \quad \texttt{tt}^+ \sim \texttt{ff}^+$$

The strategy interpreting a term is the set of plays realized by that term.
A **term**:

$$\lambda f^{U \rightarrow U}. \text{newref } r \text{ in } f \ (r := \text{tt}); \ !r \ : \ (U \rightarrow U) \rightarrow B$$

A **play**:

$$\begin{align*}
&\quad \quad (U \rightarrow U) \rightarrow B \\
&\quad \quad \quad \quad \quad q^- \\
&\quad \quad \quad \quad q^+ \\
&\quad \quad q^- \\
&()^+
\end{align*}$$

A **game**:

$$\begin{align*}
&\quad \quad \quad \quad q^+ \\
&\quad \quad \quad \quad tt^+ \sim ff^+ \\
&\quad \quad \quad \quad q^- \\
&\quad \quad \quad ()^- \\
&()^+
\end{align*}$$

The strategy interpreting a term is the set of plays realized by that term.
A term:

$$\lambda f^{U \to U}. \text{newref } r \text{ in } f (r := \texttt{tt}); \ !r : (U \to U) \to B$$

A play

\[
\begin{array}{ccc}
(U \to U) & \to & B \\
 & \q^+ & \q^- \\
 \q^- & \text{()^+} & \text{()}^- \\
\end{array}
\]

A game

\[
\begin{array}{cccc}
\text{q^-} & \text{tt^+} & \sim & \text{ff^+} \\
\text{q^+} & \text{q^-} & \text{()}^- & \text{()}^+ \\
\end{array}
\]
A term:

\[\lambda f : U \rightarrow U. \text{newref } r \text{ in } f (r := \text{tt}); \!r \quad : \quad (U \rightarrow U) \rightarrow \mathbb{B} \]

A play

\[
\begin{array}{c}
(U \rightarrow U) \rightarrow \mathbb{B} \\
q^- \\
q^+ \\
q^- \\
()^+ \\
()^- \\
()^-
\end{array}
\]

A game

\[
\begin{array}{c}
q^- \\
q^+ \\
\text{tt}^+ \sim \text{ff}^+ \\
q^- \\
()^- \\
()^+
\end{array}
\]
A term:

$$\lambda f : U \rightarrow U. \text{newref } r \in f (r := \text{tt}); !r : (U \rightarrow U) \rightarrow B$$

A play:

$$(U \rightarrow U) \rightarrow B$$

A game:

$$(\text{tt}^+) \sim (\text{ff}^+)$$

The strategy interpreting a term is the set of plays realized by that term.
A term:

$$\lambda f : \mathbb{U} \rightarrow \mathbb{U}. \text{newref } r \text{ in } f (r := \text{tt}); \ !r : (\mathbb{U} \rightarrow \mathbb{U}) \rightarrow \mathbb{B}$$

A play:

$$(\mathbb{U} \rightarrow \mathbb{U}) \rightarrow \mathbb{B}$$

A game:

$$q^- \quad q^+ \quad tt^+ \sim ff^+$$

The strategy interpreting a term is the set of plays realized by that term.
A term:

\[\lambda f^{U \to U}. \text{newref } r \text{ in } f (r := \text{tt}); \!r \ : \ (U \to U) \to B \]
A term:

\[\lambda f : U \to U. \text{newref } r \text{ in } f (r := \text{tt}); !r : (U \to U) \to B \]

A play

\[
\begin{array}{c}
(U \to U) \to B \\
q^- \\
q^+ \\
()^-
\end{array}
\]

A game

\[
\begin{array}{c}
q^- \\
q^+ \\
tt^+ \sim ff^+ \\
()^-
\end{array}
\]
Game Semantics by Example (Call-By-Name)

A term:

\[\lambda f : U \rightarrow U. \text{newref } r \ in \ f \ (r := \text{tt}); \ !r : (U \rightarrow U) \rightarrow \mathbb{B} \]

A play

\[(U \rightarrow U) \rightarrow \mathbb{B} \]

\[q^- \]

\[q^+ \]

\[()^- \]

\[\text{ff}^+ \]

A game

\[q^- \]

\[q^+ \]

\[\text{tt}^+ \sim \text{ff}^+ \]

\[q^- \]

\[()^- \]

\[()^+ \]

The strategy interpreting a term is the set of plays realized by that term.
Types as Games as Event Structures

Definition

An **event structure** is a tuple \(E = \langle |E|, \leq_E, \#_E \rangle \) where:

- \(|E|\) is a set of **events**,
- \(\leq_E\) is a partial order called **causality**,
- \(\#_E\) is an irreflexive symmetric binary relation called **conflict**.

satisfying some axioms. A **game** is an event structure \(A \) with

\[
\text{pol}_A : |A| \rightarrow \{-, +\}
\]

indicating for each event its **polarity**.

Games as Event Structures

\[
(U \rightarrow U) \rightarrow B
\]
Definitions

A (finite) configuration of an event structure E is a finite set $x \subseteq |E|$ which is:

- **Down-closed**: for all $e \in x$, for all $e' \leq_E e$, we have $e' \in x$;
- **Consistent**: for all $e, e' \in x$, we have $\neg (e \#_E e')$.

The set of (finite) configurations of E is written $C(E)$.
Plays

Definition

An **alternating play** on game A is a finite non-repetitive sequence of events $a_1 \ldots a_n$ such that $\text{pol}_A(a_1) = -$, for all $1 \leq i \leq n$, $\text{pol}_A(a_i) \neq \text{pol}_A(a_{i+1})$ and

$\{a_1, \ldots, a_i\} \in C(A)$.

We write $\text{AltPlays}(A)$ the set of (alternating) plays on A.
Definition

An *(alternating) play* on game A is a finite non-repetitive sequence of events $a_1 \ldots a_n$ such that $\text{pol}_A(a_1) = -, \text{ for all } 1 \leq i \leq n, \text{ pol}_A(a_i) \neq \text{ pol}_A(a_{i+1})$ and

$$\{a_1, \ldots, a_i\} \in C(A).$$

We write $\text{AltPlays}(A)$ the set of (alternating) plays on $A.$
Plays

Definition

An (alternating) play on game A is a finite non-repetitive sequence of events $a_1 \ldots a_n$ such that $\text{pol}_A(a_1) = -1$, for all $1 \leq i \leq n$, $\text{pol}_A(a_i) \neq \text{pol}_A(a_{i+1})$ and

$$\{a_1, \ldots, a_i\} \in C(A).$$

We write $\text{AltPlays}(A)$ the set of (alternating) plays on A.

A play

$$(U \rightarrow U) \rightarrow B$$

A game

```
\begin{align*}
q^- & \quad q^+ \\
  &  \quad t^+ \sim f^+ \\
  &  \quad ()^- \\
  &  \quad ()^+ \\
\end{align*}
```
Plays

Definition

An **alternating** play on game A is a finite non-repetitive sequence of events $a_1 \ldots a_n$ such that $\text{pol}_A(a_1) = -$, for all $1 \leq i \leq n$, $\text{pol}_A(a_i) \neq \text{pol}_A(a_{i+1})$ and

$\{a_1, \ldots, a_i\} \in C(A)$.

We write $\text{AltPlays}(A)$ the set of (alternating) plays on A.

A **play**

$$(U \rightarrow U) \rightarrow B$$

A **game**

$$q^- \sim \sim \sim tt^+ \rightarrow ff^+$$

$$q^- \rightarrow (\cdot^-)$$

$$\cdot^+$$
Plays

Definition

An (alternating) play on game A is a finite non-repetitive sequence of events $a_1 \ldots a_n$ such that $\text{pol}_A(a_1) = -$, for all $1 \leq i \leq n$, $\text{pol}_A(a_i) \neq \text{pol}_A(a_{i+1})$ and $
{a_1, \ldots, a_i} \in C(A)$.

We write $\text{AltPlays}(A)$ the set of (alternating) plays on A.

A play

$$(U \rightarrow U) \rightarrow B$$

A game

$$q^- \quad q^+$$

$$q^- \quad (_)^+$$

$$q^- \quad (_)^-$$
Plays

Definition

An *alternating* play on game A is a finite non-repetitive sequence of events $a_1 \ldots a_n$ such that $\pol_A(a_1) = -$ for all $1 \leq i \leq n$, $\pol_A(a_i) \neq \pol_A(a_{i+1})$ and

$$\{a_1, \ldots, a_i\} \in C(A).$$

We write $\textbf{AltPlays}(A)$ the set of (alternating) plays on A.

A play

$$
\begin{align*}
(U \rightarrow U) \rightarrow B \\
\uparrow & \\
q^+ & \\
q^- \\
(\cdot)^+ & \\
(\cdot)^- \\
\end{align*}
$$

A game

$$
\begin{align*}
\vdots & \\
q^- \\
(\cdot)^- & \\
\vdots \\
(q^-)^+ & \\
(\cdot)^+ & \\
\end{align*}
$$
Plays

Definition

An **(alternating) play** on game A is a finite non-repetitive sequence of events $a_1 \ldots a_n$ such that $\text{pol}_A(a_1) = -$, for all $1 \leq i \leq n$, $\text{pol}_A(a_i) \neq \text{pol}_A(a_{i+1})$ and

$$\{a_1, \ldots, a_i\} \in C(A).$$

We write $\text{AltPlays}(A)$ the set of (alternating) plays on A.
The game for \((U \rightarrow U) \rightarrow B \) with repetitions
The game for \((U \to U) \to B\) with repetitions

A play with repetitions

\[(U \to U) \to B\]
Question: is this play realisable?

\[(U \rightarrow U) \rightarrow B\]

This play is non well-bracketed and cannot be realised without callcc.
Question: is this play realisable?

\((\mathbb{U} \to \mathbb{U}) \to \mathbb{B}\)

\(\lambda f^{\mathbb{U} \to \mathbb{U}} \cdot \text{callcc} (\lambda k^{\mathbb{B} \to \mathbb{U}} \cdot f(k \mathbb{tt})) : (\mathbb{U} \to \mathbb{U}) \to \mathbb{B}\)
Question: is this play realisable?

\[(U \to U) \to B \]

\[\lambda f^{U \to U}. \text{callcc} (\lambda k^{B \to U}. f (k \text{tt})) : (U \to U) \to B \]
Question: is this play realisable?

\[(\mathbb{U} \rightarrow \mathbb{U}) \rightarrow \mathbb{B} \]

\[\rightarrow q^-, Q \]

\[q^-, Q \rightarrow q^+, Q \rightarrow \mathbb{tt}^+, A \]

\[\lambda f^{U \rightarrow U} \cdot \text{callcc} (\lambda k^{B \rightarrow U} \cdot f (k \mathbb{tt})) : (U \rightarrow U) \rightarrow \mathbb{B} \]

Theorem

This play is **non well-bracketed** and cannot be realized without **callcc**.
Question: is this play realisable?

\[(\mathbb{B} \to U) \to U\]

Theorem

This play is non-innocent and cannot be realised without references.
Question: is this play realisable?

\[(B \to U) \to U \]

\[\lambda f^{B \to U}. \text{newref } r \text{ in } f \text{ (let } x = !r \text{ in } r := \text{tt}; x) : (B \to U) \to U \]
Question: is this play realisable?

\[(\mathbb{B} \rightarrow \mathbb{U}) \rightarrow \mathbb{U}\]

\[
\lambda f^{\mathbb{B}\rightarrow \mathbb{U}} . \text{newref } r \text{ in } f \ (\text{let } x =! r \text{ in } r := tt; \ x) : (\mathbb{B} \rightarrow \mathbb{U}) \rightarrow \mathbb{U}
\]

Theorem

This play is **non-innocent** and cannot be realized without references.
Full abstraction results

all correspondences being **fully abstract** or **intensionally fully abstract**.¹

¹Follows from work in the late 90s from Abramsky, Hyland, Laird, McCusker, Ong.
Orthogonality of control and state

Theorem

Suppose a program \(M \) in \(\text{cIA} \) is observationally equivalent to

- A program \(M_1 \) that does not use \text{callcc};
- A program \(M_2 \) that does not use \text{references}.

Then, \(M \) is observationally equivalent to \(M' \) in pure \(\text{PCF} \).
The “semantic cube”
The “semantic cube”
The “semantic cube”
The "semantic cube"

IA + parallelism
GM

cPCF
Strat\textsubscript{inn} <-> cIA
Strat

Strat\textsubscript{inn,wb} <-> Strat\textsubscript{wb}

PCF
IA
The “semantic cube”
The “semantic cube”
The “semantic cube”
Outline

PCF

PPCF

+parallelism

+probabilities

+state

IPA

PIA

PART II

PART III

PPCF||

PIPA
II. Concurrent Games and Parallel Innocence
IPA and its components

Types.

\[A, B ::= U \mid B \mid N \mid A \to B \quad \text{PCF} \]
\[\mid \text{ref} \quad +\text{state} \]

Terms.

\[M, N ::= x \mid M \, N \mid \lambda x. \, M \mid Y \quad \lambda Y\text{-calculus} \]
\[\mid \text{tt} \mid \text{ff} \mid \text{if} \, M \, N_1 \, N_2 \]
\[\mid n \mid \text{succ} \, M \mid \text{pred} \, M \mid \text{iszero} \, M \]
\[\mid \text{skip} \mid M; N \quad \text{PCF} \]
\[\mid \text{newref} \, v := b \, \text{in} \, M \mid M := N \mid !M \quad +\text{state} \]
\[\mid \text{let} \left(\begin{array}{c}
 x = M \\
 y = N
\end{array} \right) \text{in} \, T \quad +\text{parallel} \]

\[\iff \text{PCF} + \text{state} + \text{parallel} = \text{IPA} \]

Standard typing rules and call-by-name operational semantics.
Roadmap

PCF \parallel ?
+parallelism
+sequentiality
?
+parallelism
+state
+parallel innocence

IPA ?
+parallelism
+sequentiality

PCF ?
+state
+parallel innocence

IA ?
+parallelism
+state
+parallel innocence
Non-alternating game semantics for IPA

Theorem

The model GM of games and well-bracketed non-alternating strategies is fully abstract for IPA.

Definition

An *(non-alternating) play* on game A is a finite non-repetitive sequence of events $a_1 \ldots a_n$ such that for all $1 \leq i \leq n$,

$$\{a_1, \ldots, a_i\} \in C(A).$$

We write $\text{Plays}(A)$ the set of (non-alternating) plays on A.

Definition

A *non-alternating strategy* $\sigma : A$ is a subset

$$\sigma \subseteq \text{Plays}(A)$$

satisfying some conditions.

Non-alternating plays

A term:

$$\lambda f : U \to U. \text{newref } r \text{ in } f (r := \text{tt}); !r : (U \to U) \to B$$

A play

$$(U \to U) \to B$$

A game

$$q^- \quad q^+ \quad \text{tt}^+ \quad \text{ff}^+

q^- \quad (\)^-

(\)^+$$
Non-alternating plays

A term:

$$\lambda f : U \to U \cdot \text{newref } r \text{ in } f \ (r := \texttt{tt}); \ !r : (U \to U) \to B$$

A play

$$(U \to U) \to B$$

A game

$$q^- \quad q^+ \quad \texttt{tt}^+ \quad \texttt{ff}^+$$

$$q^- \quad (^-)$$

$$()^+$$
Non-alternating plays

A term:

\[\lambda f : U \to U . \text{newref } r \text{ in } f \ (r := \texttt{tt}); \ !r \ : \ (U \to U) \to \mathbb{B} \]

A play

\[(U \to U) \to \mathbb{B}\]

A game

\[
\begin{align*}
q^- & \quad q^+ \\
\text{tt}^+ & \quad \text{ff}^+ \\
(\) & \quad ()^+
\end{align*}
\]
Non-alternating plays

A term:

\[\lambda f^{U \rightarrow U} \cdot \text{newref } r \text{ in } f (r := \texttt{tt}); !r : (U \rightarrow U) \rightarrow B \]

A play

A game
Non-alternating plays

A term:

\[\lambda f^{U \to U}. \text{newref } r \in f \ (r := \text{tt}); \ !r \ : \ (U \to U) \to B \]

A play

\[(U \to U) \to B\]

A game

\[q^- \quad q^+ \quad (\text{tt}^+ \quad \text{ff}^+) \quad (\text{tt}^- \quad \text{ff}^-) \quad (\text{tt}^+ \quad \text{ff}^-) \quad (\text{tt}^- \quad \text{ff}^+) \]
Non-alternating plays

A term:

$$\lambda f : U \to U . \text{newref } r \text{ in } f \ (r := \text{tt}); !r \ : \ (U \to U) \to B$$

A play

$$(U \to U) \to B$$

A game

$$q^- \quad q^+$$

$$q^- \quad ()^-$$

$$q^- \quad (())^+$$

$$q^- \quad (tt^+ \quad ff^+)$$
Non-alternating plays

A term:

\[\lambda f^{U \rightarrow U}. \text{newref } r \text{ in } f (r := \text{tt}); !r : (U \rightarrow U) \rightarrow B \]

A play

\[(U \rightarrow U) \rightarrow B\]

A game

\[\text{q}^- \quad \text{q}^+ \quad \text{tt}^+ \quad \text{ff}^+ \]

\[\text{q}^- \quad \text{q}^+ \quad \text{tt}^+ \quad \text{ff}^+ \]

\[\text{q}^- \quad \text{q}^+ \quad \text{tt}^+ \quad \text{ff}^+ \]
Non-alternating plays

A term:

$$\lambda f : U \rightarrow U. \text{newref } r \text{ in } f \ (r := \texttt{tt}); \ !r \ : \ (U \rightarrow U) \rightarrow \mathbb{B}$$

A play

$$(U \rightarrow U) \rightarrow \mathbb{B}$$

A game

$$q^- \quad q^+ \quad \texttt{tt}^+ \quad \texttt{ff}^+$$

$$q^- \quad (_)^- \quad \texttt{tt} \quad \texttt{ff}$$

$$_ \quad _ \quad _ \quad _+$$
Non-alternating plays

A term:

$$\lambda f : U \rightarrow U. \text{newref } r \text{ in } f(r := \text{tt}); \text{!r} : (U \rightarrow U) \rightarrow B$$
Non-alternating plays

A term:

$$\lambda f : U \rightarrow U . \text{newref } r \text{ in } f (r := \text{tt}); !r : (U \rightarrow U) \rightarrow \mathbb{B}$$

A play

$$\begin{align*}
(& U \rightarrow U) \rightarrow \mathbb{B} \\
& q^- \\
& q^+ \\
& q^- \\
& ()^- \\
& ()^+ \\
& ff^+
\end{align*}$$

A game

$$\begin{align*}
q^- \\
 q^+ \\
 \text{tt}^+ \\
 \text{ff}^+ \\
q^- \\
 ()^- \\
 ()^+
\end{align*}$$
Non-alternating plays

A term:

\[\lambda f : \mathbb{U} \rightarrow \mathbb{U}. \text{newref } r \text{ in } f \ (r := \texttt{tt}); !r \ : \ (\mathbb{U} \rightarrow \mathbb{U}) \rightarrow \mathbb{B} \]
Non-alternating plays

A term:

\[\lambda f^{U \to U}. \text{newref } r \text{ in } f (r := \text{tt}); !r : (U \to U) \to B \]
Non-alternating plays

A term:

\[\lambda f : U \rightarrow U. \text{newref } r \text{ in } f (r := \text{tt}); !r : (U \rightarrow U) \rightarrow \mathbb{B} \]

A play

\[
(\rightarrow U) \rightarrow \mathbb{B}
\]

\[q^- \]

\[q^+ \]

\[()^+ \]

\[()^- \]

\[\text{tt}^+ \]

A game

\[q^- \]

\[q^+ \]

\[\text{tt}^+ \]

\[\text{ff}^+ \]

\[()^- \]

\[()^+ \]
Question: can a program without state realize these two plays?

\[
(B \rightarrow U) \rightarrow U
\]

\[
(B \rightarrow U) \rightarrow U
\]
Question: can a program without state realize these two plays?

\[
\lambda f^{\mathbb{B} \to \mathbb{U}}. \text{let } \begin{pmatrix} x &= f \text{tt} \\ y &= f \text{ff} \end{pmatrix} \text{ in } x; y : (\mathbb{B} \to \mathbb{U}) \to \mathbb{U}
\]
Question: can a program without state realize these two plays?

\[
\lambda f^{\mathbb{B} \to U}. \text{let } \begin{pmatrix} x &= f^{tt} \\ y &= f^{ff} \end{pmatrix} \text{ in } x; \ y : (\mathbb{B} \to U) \to U
\]
Question: can a program without state realize these two plays?

\[
\lambda f \mathbb{B} \to U. \text{let } \begin{cases} x = f \mathbf{tt} \\ y = f \mathbf{ff} \end{cases} \text{ in } x; y : (\mathbb{B} \to U) \to U
\]

\[\leftrightarrow \text{ concurrent games}^{3}\]

3 Family of models initiated by Abramsky and Melliès (1999), then Melliès, Mimram, Faggian, Piccolo (2000s), then Rideau, Winskel, Castellan, C., Paquet, Alcolei, de Visme etc... (2010s).
Roadmap

PCF II → +state → IPA

+parallel innocence

→ +state

PCF → +parallel innocence → IA

+sequentiality

CG

+parallelism

+sequentiality

+parallelism
Partially ordered plays: augmented configurations

Definition

An augmentation on A is a conflict-free event structure $q = \langle |q|, \leq_q \rangle$ where

$$C(q) \subseteq C(A).$$

An augmentation

\[
\begin{array}{c}
(B \rightarrow U) \rightarrow U \\
\downarrow \\
q^{-} \\
\downarrow \\
q^{-} \\
\downarrow \\
q^{+} \\
\downarrow \\
(_)^{-} \\
\downarrow \\
(_)^{+} \\
\end{array}
\]

(\rightarrow is the immediate causality relation).
Definition

An **augmentation** on A is a conflict-free event structure $q = \langle |q|, \leq_q \rangle$ where

$$C(q) \subseteq C(A).$$

An augmentation

$$(\mathbb{B} \rightarrow \mathbb{U}) \rightarrow \mathbb{U}$$

(→ is the **immediate causality relation**).
Question: is this augmentation realizable?
Question: is this augmentation realizable?

\[\lambda f^{B \rightarrow U}. f \text{ tt} : (B \rightarrow U) \rightarrow U \]
Question: is this augmentation realizable?

\[(\mathcal{B} \rightarrow \mathcal{U}) \rightarrow \mathcal{U}\]
Question: is this augmentation realizable?

\[(B \rightarrow U) \rightarrow U\]

Definition

An augmentation \(q \) on \(A \) is **courteous** iff for all \(a_1 \rightarrow_q a_2 \) such that \(\neg(a_1 \rightarrow_A a_2) \), we have \(\text{pol}_A(a_1) = - \) and \(\text{pol}_A(a_2) = + \).

We write \(\text{Aug}(A) \) for the set of **courteous augmentations** on \(A \).
Question: is this augmentation realizable?

\[(U \rightarrow U) \rightarrow B\]
Question: is this augmentation realizable?

\[\lambda f^{\mathbb{U} \to \mathbb{U}}. \text{newref } r \text{ in } f \ (r := \texttt{tt}); \ !r : \ (\mathbb{U} \to \mathbb{U}) \to \mathbb{B} \]
Question: is this augmentation realizable?

\[
\lambda f^{\text{U} \to \text{U}}. \text{newref } r \text{ in } f (r := \text{tt}); \! r : (\text{U} \to \text{U}) \to \text{B}
\]
Question: is this augmentation realizable?

Definition

A (concurrent) strategy \(\sigma : A \) is a **non-empty, prefix-closed** subset

\[\sigma \subseteq \text{Aug}(A) \]

closed under extensions by Opponent events.
Theorem

The model CG of games and (well-bracketed) concurrent strategies is intensionally fully abstract for IPA.

Proof.

If $\sigma : A$ is a strategy, then

$$\text{Plays}(\sigma) = \bigcup \{ \text{Plays}(q) \mid q \in \sigma \}$$

is a strategy in the Ghica-Murawski sense.

This forms a functor

$$\text{Plays}(-) : \text{CG} \to \text{GM}$$

preserving the interpretation.

\[\]
Roadmap

\[\text{PCF} \parallel \text{CG}_{\text{inn}} \xrightarrow{+\text{state}} \xleftarrow{+\text{parallel innocence}} \text{IPA} \xrightarrow{+\text{parallelism}} \text{CG} \]

\[+\text{parallelism} \quad +\text{sequentiality} \quad +\text{parallelism} \quad +\text{sequentiality} \]

\[\text{PCF} \xrightarrow{+\text{state}} \xleftarrow{+\text{parallel innocence}} \text{IA} \]

\[? \quad \quad \quad \quad \quad \quad ? \]
Question: which of these two is realizable only with state?

\[
\begin{align*}
\mathbb{U} & \rightarrow \mathbb{U} \rightarrow \mathbb{U} \\
(\mathbb{U} \rightarrow \mathbb{U} \rightarrow \mathbb{U}) & \rightarrow \mathbb{U}
\end{align*}
\]
Question: which of these two is realizable only with state?

\[
U \rightarrow U \rightarrow U
\]

\[
(U \rightarrow U \rightarrow U) \rightarrow U
\]

Definition

An augmentation \(q \in \text{Aug}(A) \) is **innocent** if it has no pattern of the form

\[
\begin{align*}
\triangledown m^- & \rightarrow\cdots \rightarrow m^- \\
\triangle m^+ & \rightarrow m^- \\
\triangle m^- & \rightarrow\cdots \rightarrow m^- \\
\end{align*}
\]

A strategy \(\sigma : A \) is **innocent** if any \(q \in \sigma \) is.
The causal shape of parallel innocence
Question: is the following augmentation realizable without state?

\[(\mathbb{U} \rightarrow \mathbb{U}) \rightarrow (\mathbb{U} \rightarrow \mathbb{U}) \rightarrow \mathbb{U}\]
Question: is the following augmentation realizable without state?

\[(\mathbb{U} \rightarrow \mathbb{U}) \rightarrow (\mathbb{U} \rightarrow \mathbb{U}) \rightarrow \mathbb{U} \]
Question: is the following augmentation realizable without state?

\[(\mathbb{U} \rightarrow \mathbb{U}) \rightarrow (\mathbb{U} \rightarrow \mathbb{U}) \rightarrow \mathbb{U}\]
Question: is the following augmentation realizable without state?

\[(U \rightarrow U) \rightarrow (U \rightarrow U) \rightarrow U \]
Question: is the following augmentation realizable without state?

\[(\mathcal{U} \rightarrow \mathcal{U}) \rightarrow (\mathcal{U} \rightarrow \mathcal{U}) \rightarrow \mathcal{U}\]
Question: is the following augmentation realizable without state?

\[(U \rightarrow U) \rightarrow (U \rightarrow U) \rightarrow U\]

Definition

A **grounded causal chain (gcc)** of augmentation \(q \in \text{Aug}(A)\) is

\[\rho = \rho_1 \rightarrow_q \rho_2 \rightarrow_q \ldots \rightarrow_q \rho_n\]

where \(\rho_1\) is minimal in \(q\).
Question: is the following augmentation realizable without state?

\[(U \rightarrow U) \rightarrow (U \rightarrow U) \rightarrow U\]

Definition

A grounded causal chain (gcc) of augmentation \(q \in \text{Aug}(A) \) is

\[\rho = \rho_1 \xrightarrow{q} \rho_2 \xrightarrow{q} \cdots \xrightarrow{q} \rho_n\]

where \(\rho_1 \) is minimal in \(q \).

Definition

A strategy \(\sigma : A \) is **visible** iff for all \(\rho \in \text{gcc}(\sigma), \rho \in C(A) \).
Full abstraction for PCF_{\parallel}^5

Theorem

The model CG_{inn} of games and deterministic, (visible) parallel innocent strategies is intensionally fully abstract for PCF_{\parallel}.

Proof.

Via finite definability up to observational equivalence.

Full abstraction for PCF_\parallel \(^5\)

Theorem

The model CG_{inn} of games and deterministic, (visible) parallel innocent strategies is intensionally fully abstract for PCF_\parallel.

Proof.

Via finite definability up to observational equivalence.

Sequentiality and full abstraction for IA^6

Theorem

The model CG_{seq} of games and deterministic sequential strategies is intensionally fully abstract for IA.

Proof.

If $\sigma : A$ is well-bracketed sequential deterministic, then

$$\text{AltPlays}(\sigma) = \bigcup \{ \text{AltPlays}(q) \mid q \in \sigma \}$$

is a strategy in the sense of Abramsky-McCusker. This forms a functor

$$\text{AltPlays}(-) : \text{CG}_{\text{seq}} \rightarrow \text{AM}$$

preserving the interpretation.

Wrapping up
Wrapping up

PCF ||
CG_{inn} + parallel innocence + determinism + state

IPA
CG + parallelism + sequentiality + determinism

PCF
CG_{seq} + parallelism + sequentiality + determinism

IA
CG_{inn} + parallel innocence + state

?
Wrapping up

- \(\text{PCF}_{\parallel} \) → \(\text{IPA} \) with state
- \(\text{CG}_{\text{inn}} \) → \(\text{CG} \) with parallel innocence and determinism
- \(\text{PCF} \) → \(\text{IA} \) with state
- \(\text{CG}_{\text{seq,inn}} \) → \(\text{CG}_{\text{seq}} \) with parallel innocence
- \(\text{PCF} \) → \(\text{IPA} \) with sequentiality
- \(\text{CG}_{\text{inn}} \) → \(\text{CG} \) with parallelism

+parallelism
+sequentiality
Wrapping up

\[
\begin{array}{ccc}
\text{PCF}_{||} & \xrightarrow{+\text{state}} & \text{IPA} \\
\text{CG}_{\text{inn}} & \xleftarrow{+\text{parallel innocence}} & \text{CG} \\
\text{PCF} & \xleftarrow{+\text{sequentiality}} & \text{IA} \\
\text{CG}_{\text{seq,inn}} & \xrightarrow{+\text{parallel innocence}} & \text{CG}_{\text{seq}} \\
& \xleftarrow{+\text{sequentiality}} & \\
\text{HO-Inn} & \xrightarrow{+\text{determinism}} & \\
\end{array}
\]
Wrapping up
Wrapping up
Wrapping up

PCF$_{\parallel}$ \(\xrightarrow{CG_{inn}}\) IPA

PCF \(\xrightarrow{CG_{seq,inn}}\) PPCF \(\xrightarrow{+parallel\ innocence}\) IA \(\xleftarrow{CG_{seq}}\)

PCF \(\xrightarrow{+parallelism}\) IPA

PCF \(\xrightarrow{+sequentiality}\) PPCF

PCF \(\xrightarrow{+probabilities}\) PPCF

PCF \(\xrightarrow{+state}\) IA
Wrapping up
Wrapping up
III. The sequential face
Probabilistic IA

Types.

\[A, B ::= \mathbb{U} | \mathbb{B} | A \rightarrow B \]

Terms.

\[M, N ::= x | M \cdot N | \lambda x. M | Y | tt | ff | if M N_1 N_2 | skip | M; N | newref \nu := b \text{ in } M | M := N | !M | \text{rand}() | +\text{state} +\text{probabilities} \]
Roadmap

PCF \rightarrow \text{PPCF} \rightarrow \text{PIA}

\text{CG}_{\text{seq,inn}} \rightarrow \text{PPCF} \leftarrow \text{IA} \rightarrow \text{CG}_{\text{seq}}

+probabilities

+state

+parallel innocence
<table>
<thead>
<tr>
<th>Definiton</th>
<th>A probabilistic strategy $\sigma : A$ is a function $\sigma : \text{Aug}(A) \rightarrow [0, 1]$ satisfying some conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjecture</td>
<td>The category PCG of games and (well-bracketed) sequential probabilistic strategies is intensionally fully abstract for PIA.</td>
</tr>
<tr>
<td>Proof.</td>
<td>If $\sigma : A$ is a probabilistic concurrent strategy, then setting $\text{AltPlays}(\sigma) : \text{AltPlays}(A) \rightarrow [0, 1]$ $s \mapsto \sum_{q \in \sigma \text{ and } s \in \text{AltPlays}(q)} \sigma(q)$ yields a probabilistic strategy in the sense of Danos-Harmer. This induces $\text{AltPlays}(\cdot) : \text{PCG} \rightarrow \text{DH}$.</td>
</tr>
</tbody>
</table>

\[\text{AltPlays}(\sigma)(s) = \sum_{q \in \sigma \text{ and } s \in \text{AltPlays}(q)} \sigma(q) \]
Roadmap
Roadmap

PCF → PPCF
+ confidence
PCG_{seq,inn} → + parallel innocence

+ state

PCF ← PPCF
+ confidence
PCG_{seq,inn} ← + parallel innocence

IA
CG_{seq} → + confidence

AM
CG_{seq} ← + parallel innocence

HO-Inn

PIA
PCG_{seq} ← + parallel innocence

IV. Conclusions
Summary of the talk
Summary of the talk

+parallelism
+probabilities
+state
Summary of the talk
Summary of the talk

PCF∥ → PPCF∥ → PPCF → IPA → PIA

+parallelism +probabilities +state
Perspectives

A. Probabilistic Relational Collapse
Refresher on the relational model

Theorem

The category Rel has **sets as objects and relations**

$$R \subseteq A \times B$$

as morphisms from A to B.

It is a compact closed category with biproducts.
Refresher on the relational model

Theorem

The category Rel has sets as objects and relations

$$R \subseteq A \times B$$

as morphisms from A to B.

It is a compact closed category with biproducts.

$$\text{L}B \text{M} = \{tt, ff\}$$
Refresher on the relational model

Theorem

The category Rel has sets as objects and relations

$$R \subseteq A \times B$$

as morphisms from A to B.

It is a compact closed category with biproducts.

\[
\begin{align*}
(B) &= \{\text{tt, ff}\} \\
(U) &= \{(())\}
\end{align*}
\]
Refresher on the relational model

Theorem

The category \textbf{Rel} has **sets** as objects and **relations**

$$R \subseteq A \times B$$

as morphisms from A to B.

It is a compact closed category with biproducts.

\[
\begin{align*}
\langle \mathbf{B} \rangle &= \{ \text{tt, ff} \} \\
\langle \mathbf{U} \rangle &= \{ () \} \\
\langle A \to B \rangle &= \end{align*}
\]
Refresher on the relational model

Theorem

The category \(\text{Rel} \) has **sets** as objects and **relations**

\[
R \subseteq A \times B
\]

as morphisms from \(A \) to \(B \).

It is a **compact closed category with biproducts**.

\[
\begin{align*}
\langle B \rangle &= \{ \texttt{tt}, \texttt{ff} \} \\
\langle U \rangle &= \{ () \} \\
\langle A \to B \rangle &= \langle A \rangle^* \otimes \langle B \rangle
\end{align*}
\]
Refresher on the relational model

Theorem

The category \textbf{Rel} has \textit{sets} as objects and \textit{relations}

\[R \subseteq A \times B \]

as morphisms from \(A\) to \(B\).

It is a \textbf{compact closed} category with \textbf{biproducts}.

\[
\begin{align*}
\langle B \rangle &= \{ \text{tt, ff} \} \\
\langle U \rangle &= \{ () \} \\
\langle A \rightarrow B \rangle &= \langle A \rangle \otimes \langle B \rangle
\end{align*}
\]
Refresher on the relational model

Theorem

The category \mathbf{Rel} has sets as objects and relations

$$R \subseteq A \times B$$

as morphisms from A to B.

It is a compact closed category with biproducts.

$$(|B|) = \{\text{tt, ff}\}$$

$$(|U|) = \{()\}$$

$$(|A \rightarrow B|) = (|A|) \times (|B|)$$
Theorem

The category \textbf{Rel} has sets as objects and relations

$$R \subseteq A \times B$$

as morphisms from A to B.

It is a compact closed category with biproducts.

$$(\bot) = \{\text{tt}, \text{ff}\}$$

$$(\bot) = \emptyset$$

$$(A \rightarrow B) = (|A|) \times (|B|)$$

$$(!A) = \mathcal{M}_f(|A|)$$
Refresher on the relational model

Theorem

The category Rel has sets as objects and relations

\[R \subseteq A \times B \]

as morphisms from A to B.

It is a compact closed category with biproducts.

\[
\begin{align*}
(B) &= \{tt, ff\} \\
(U) &= \{()\} \\
(A \rightarrow B) &= (A) \times (B)
\end{align*}
\]
Refresher on the relational model

Theorem

The category Rel has sets as objects and relations

$$R \subseteq A \times B$$

as morphisms from A to B.

It is a compact closed category with biproducts.

$$(|B|) = \{tt, ff\}$$

$$(|U|) = \{(())\}$$

$$(|A \to B|) = (|A| + 1) \times (|B|)$$
Refresher on the relational model

Theorem

The category \(\text{Rel} \) *has sets as objects and relations*

\[R \subseteq A \times B \]

as morphisms from \(A \) *to* \(B \).

It is a compact closed category with biproducts.

\[
\begin{align*}
(\|B\|) &= \{ \texttt{tt}, \texttt{ff} \} \\
(\|U\|) &= \{ () \} \\
(\mathbb{A} \rightarrow B) &= ((\|A\| + 1) \times \|B\|) \\
\lambda f^{\mathbb{B} \rightarrow U} \cdot f \texttt{tt} &= \begin{cases}
(\mathbb{B} \rightarrow U) \rightarrow U \\
((\texttt{tt}, ()), ()) \\
((\star, ()), ())
\end{cases}
\end{align*}
\]
Refresher on the relational model

Theorem

The category \textbf{Rel} has sets as objects and relations

\[R \subseteq A \times B \]

as morphisms from \(A \) to \(B \).

It is a compact closed category with biproducts.

\[(|B|) = \{ \texttt{tt}, \texttt{ff} \} \]

\[(|U|) = \{ () \} \]

\[(|A \rightarrow B|) = (|A| + 1) \times (|B|) \]

\[\lambda f^{B \rightarrow U} \cdot f \texttt{tt} = \left\{ \begin{array}{l}
(B \rightarrow U) \rightarrow U \\
((\texttt{tt}, ()), ()) \\
((\star, ()), ())
\end{array} \right\} \]

\[(x, z) \in R_2 \circ R_1 \iff \exists y, (x, y) \in R_1 \& (y, z) \in R_2 \]
Types as games

\[[U] = \begin{array} {c}
q^-\\
| \\
()^+
\end{array} \]

\[[B] = \begin{array} {c}
q^- \\
| \\
\circ \circ \circ \circ \circ \\
\circ \circ \\
tt^+ \\
ff^+
\end{array} \]
Types as games

\[
[U] = q^{-} \\
\downarrow \\
()^{+}
\]

\[
[B] = q^{-} \\
\downarrow \\
\begin{array}{c}
\text{tt}^{+} \\
\hline
\hline
\text{ff}^{+}
\end{array}
\]

Definition

If \(B \) has exactly one minimal event;

\[
|A \rightarrow B| = |A| + |B|
\]

\[
\text{pol}_{A \rightarrow B} = [-\text{pol}_A, \text{pol}_B]
\]

\[
\leq_{A \rightarrow B} = \{(a_1, a_2) \mid a_1 \leq_A a_2\} \\
\cup \{(b_1, b_2) \mid b_1 \leq_B b_2\} \\
\cup \{(\min(B), a) \mid a \in |A|\}
\]

\[\lambda A, B = [\lambda A, \lambda B] \]
Types as games

\[
[u] = \begin{array}{c}
q^- \\
()^+
\end{array}
\]

\[
[b] = \begin{array}{c}
q^- \\
\text{tt}^+ \\
\sim \sim \sim
\text{ff}^+
\end{array}
\]

Definition

If \(B \) has exactly one minimal event;

\[
|A \rightarrow B| = |A| + |B|
\]

\[
\text{pol}_{A \rightarrow B} = [-\text{pol}_A, \text{pol}_B]
\]

\[
\leq_{A \rightarrow B} = \{(a_1, a_2) \mid a_1 \leq_A a_2\} \\
\cup \{(b_1, b_2) \mid b_1 \leq_B b_2\} \\
\cup \{(\min(B), a) \mid a \in |A|\}
\]

Example

\[
[\left(\left(u \rightarrow u\right) \rightarrow b\right) = \begin{array}{c}
q^- \\
q^+ \\
\text{tt}^+ \\
\sim \sim \sim
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
q^- \\
()^+
\end{array}
\]
Types as games

\[[U] = q^-, Q \]

\[[B] = q^- \]

Definition

If \(B \) has exactly one minimal event;

\[|A \rightarrow B| = |A| + |B| \]

\[\text{pol}_{A \rightarrow B} = [-\text{pol}_A, \text{pol}_B] \]

\[\leq_{A \rightarrow B} = \{(a_1, a_2) \mid a_1 \leq_A a_2\} \]

\[\cup \{(b_1, b_2) \mid b_1 \leq_B b_2\} \]

\[\cup \{(\min(B), a) \mid a \in |A|\} \]

Example

\[[(U \rightarrow U) \rightarrow B] = \]

\[q^- \]

\[q^+ \]

\[\text{tt}^+ \]

\[\sim \text{ff}^+ \]

\[q^- \]

\[()^- \]

\[()^+ \]
Types as games

\[[U] = q^-, Q \]

\[(+) +, A \]

Definition

If \(B \) has exactly one minimal event;

\[|A \rightarrow B| = |A| + |B| \]

\[\text{pol}_{A \rightarrow B} = [-\text{pol}_A, \text{pol}_B] \]

\[\leq_{A \rightarrow B} = \{(a_1, a_2) \mid a_1 \leq_A a_2\} \]

\[\cup \{(b_1, b_2) \mid b_1 \leq_B b_2\} \]

\[\cup \{(\text{min}(B), a) \mid a \in |A|\} \]

Example

\[[(U \rightarrow U) \rightarrow B] = \]

\[q^- \]

\[\text{tt}^+ \]

\[\sim \text{ff}^+ \]

\[q^- \]

\[(\cdot)^- \]

\[(\cdot)^+ \]
Types as games

\[
[U] = q^{-}, Q
\]

\[
(B) = \begin{array}{c}
q^{-}, Q \\
\text{tt}^+, \mathcal{A} \\
\sim \\
\text{ff}^+, \mathcal{A}
\end{array}
\]

Definition

If \(B \) has exactly one minimal event;

\[
|A \rightarrow B| = |A| + |B|
\]

\[
\text{pol}_{A \rightarrow B} = [-\text{pol}_{A}, \text{pol}_{B}]
\]

\[
\leq_{A \rightarrow B} = \{(a_1, a_2) \mid a_1 \leq_{A} a_2\}
\]

\[
\cup \{(b_1, b_2) \mid b_1 \leq_{B} b_2\}
\]

\[
\cup \{\text{min}(B), a\} \mid a \in |A|
\]

Example

\[
[(U \rightarrow U) \rightarrow B] =
\]

\[
\begin{array}{c}
q^{-} \\
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
q^{-} \quad ()^- \\
\quad ()^+
\]

\[
\begin{array}{c}
q^+ \\
\quad \\
\quad \\
\quad
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\quad \\
\quad \\
\quad
\end{array}
\]

\[
\begin{array}{c}
\text{ff}^+ \\
\quad \\
\quad \\
\quad
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
q^- \\
\quad \\
\quad \\
\quad
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^+ \\
\sim \\
\text{ff}^+
\end{array}
\]
Types as games

\[[U] = q^{-, Q} \]

\[(\,)^{+, A} \]

\[[B] = q^{-, Q} \]

\[\text{tt}^{+, A} \sim \text{ff}^{+, A} \]

Definition

If \(B \) has exactly one minimal event;

\[|A \rightarrow B| = |A| + |B| \]

\[\text{pol}_{A \rightarrow B} = [\neg \text{pol}_A, \text{pol}_B] \]

\[\leq_{A \rightarrow B} = \{(a_1, a_2) \mid a_1 \leq_A a_2\} \]

\[\bigcup \{(b_1, b_2) \mid b_1 \leq_B b_2\} \]

\[\bigcup \{(\min(B), a) \mid a \in |A|\} \]

\[\lambda_{A, B} = [\lambda_A, \lambda_B] \]

Example

\[[(U \rightarrow U) \rightarrow B] = \]

\[q^{-} \]

\[\text{tt}^{+} \sim \text{ff}^{+} \]

\[q^{-} \]

\[(\,)^{-} \]

\[(\,)^{+} \]
Types as games

\[
[\emptyset] = \begin{array}{c}
q^{-}, Q \\
\end{array}
\]

\[
(U) = \begin{array}{c}
q^{-}, Q \\
\end{array}
\]

\[
[B] = \begin{array}{c}
q^{-}, Q \\
\end{array}
\]

\[
\lambda_{A, B} = [\lambda_A, \lambda_B]
\]

\[
\lambda_{A, B} = [-\lambda_A, \lambda_B]
\]

\[
\lambda_{A, B} = [\lambda_A, \lambda_B]
\]

\[
\lambda_{A, B} = [\lambda_A, \lambda_B]
\]

Definition

If \(B \) has exactly one minimal event;

\[
|A \to B| = |A| + |B|
\]

\[
\text{pol}_{A \to B} = [-\text{pol}_A, \text{pol}_B]
\]

\[
\leq_{A \to B} = \{(a_1, a_2) | a_1 \leq_A a_2\}
\]

\[
\cup \{(b_1, b_2) | b_1 \leq_B b_2\}
\]

\[
\cup \{(\text{min}(B), a) | a \in |A|\}
\]

\[
\lambda_{A, B} = [\lambda_A, \lambda_B]
\]

Example

\[
[(\emptyset \to \emptyset) \to B] =
\]

\[
\begin{array}{c}
q^{-}, Q \\
\end{array}
\]

\[
\begin{array}{c}
\text{tt}^{+, A} \sim \text{ff}^{+, A}
\end{array}
\]

\[
\begin{array}{c}
q^{-}, Q \\
\end{array}
\]

\[
\lambda_{A, B} = [\lambda_A, \lambda_B]
\]

\[
\lambda_{A, B} = [\lambda_A, \lambda_B]
\]

\[
\lambda_{A, B} = [\lambda_A, \lambda_B]
\]
Types as games

\[[\mathbb{U}] = q^{-}, Q \]
\[(\mathbf{)}^{+}, A \]

\[[\mathbb{B}] = q^{-}, Q \]
\[\text{tt}^{+}, A \sim \text{ff}^{+}, A \]

Definition

If \(B \) has exactly one minimal event;

\[|A \rightarrow B| = |A| + |B| \]

\[\text{pol}_{A \rightarrow B} = [-\text{pol}_A, \text{pol}_B] \]

\[\leq_{A \rightarrow B} = \{(a_1, a_2) \mid a_1 \leq_A a_2\} \]
\[\cup \{(b_1, b_2) \mid b_1 \leq_B b_2\} \]
\[\cup \{(\text{min}(B), a) \mid a \in |A|\} \]

\[\lambda_{A, B} = [\lambda_A, \lambda_B] \]

Example

\[[(\mathbb{U} \rightarrow \mathbb{U}) \rightarrow \mathbb{B}] = \]
\[q^{-}, Q \]
\[q^{+}, Q \]
\[\text{tt}^{+}, A \sim \text{ff}^{+}, A \]

\[q^{-}, Q \]
\[\text{tt}^{+}, A \sim \text{ff}^{+}, A \]

\[(\mathbf{)}^{-}, A \]

\[(\mathbf{)}^{+}, A \]

Definition

A configuration \(x \in C(A) \) is **complete** iff every question has an answer. Write \(\int A \) the set of non-empty complete configurations of \(A \).
Games and the web

Theorem

For any type A,

$$\int [A] \cong (A)$$
Games and the web

Theorem

For any type \(A \),

\[
\int[A] \cong (A)
\]
Games and the web

Theorem

For any type A,

\[\int [A] \cong (A) \]
Collapse of strategies

If $\sigma : A$ is a strategy, write $C(\sigma) = \bigcup \{ C(q) \mid q \in \sigma \}$.

Definition

$\int \sigma = C(\sigma) \cap (\int A)$

Example

$\int \left(\left((U \rightarrow U) \rightarrow B \right), \left((U \rightarrow U) \rightarrow B \right) \right) \sim \left\{ \left((U \rightarrow U) \rightarrow B \right), \left((((), (), ()), \text{tt} \right), \left((((), (), ()), \text{ff} \right) \right\}$
Composition of strategies

Definition

$q \in \text{Aug}(A \rightarrow B)$ and $p \in \text{Aug}(B \rightarrow C)$ are **causally compatible** iff

\begin{align*}
(1) & \quad |q| = x_A + x_B \quad \& \quad |p| = x_B + x_C \\
(2) & \quad \leq_q \cup \leq_p \quad \text{is acyclic}.
\end{align*}

Then, their **interaction** is

$$p \otimes q = (x_A + x_B + x_C, (\leq_q \cup \leq_p)^*)$$

Their **composition** is

$$p \odot q = p \otimes q \upharpoonright A \rightarrow C$$

Definition

If $\sigma : A \rightarrow B$ and $\tau : B \rightarrow C$ are strategies, then their **composition** is

$$\tau \odot \sigma = \{ p \odot q \mid q \in \sigma \text{ and } p \in \tau \text{ are causally compatible}\}$$
Example of composition

Overall composition

\[
\begin{pmatrix}
(U \to U) \to B \\
(U \to U) \to B
\end{pmatrix}
\quad ,
\quad
\begin{pmatrix}
(U \to U) \\
(U \to U)
\end{pmatrix}
\quad \star
\quad
\begin{pmatrix}
(U \to U)
\end{pmatrix}
\quad =
\]
Example of composition

Overall composition

\[
\left((U \to U) \to B \right), \quad \left((U \to U) \to B \right) \quad \circ \quad \left(U \to U \right) =
\]

\[
\left((U \to U) \to B \right), \quad \left((U \to U) \to B \right) \quad \circ \quad \left(U \to U \right) =
\]
Example of composition

Overall composition

\[
\begin{pmatrix}
(U \to U) \to B
\end{pmatrix},
\begin{pmatrix}
(U \to U) \to B
\end{pmatrix}
\] \quad \circ \quad \begin{pmatrix}
U \to U
\end{pmatrix}
Example of composition

Overall composition

\[
\left((U \to U) \to B \right) \circ \left((U \to U) \to B \right) =
\]

\[
\left(U \to U \right)
\]
Example of composition

Overall composition

\[
\left((U \rightarrow U) \rightarrow B \right) \cdot \left((U \rightarrow U) \rightarrow B \right) \cdot \left(U \rightarrow U \right) =
\]

\[
\left((U \rightarrow U) \rightarrow B \right) \cdot \left((U \rightarrow U) \rightarrow B \right)
\]

\[
\left((U \rightarrow U) \rightarrow B \right) \cdot \left(U \rightarrow U \right) =
\]

\[
\left((U \rightarrow U) \rightarrow B \right) \cdot \left(U \rightarrow U \right)
\]
Example of composition

Overall composition

\[
\begin{pmatrix}
(U \rightarrow U) \rightarrow B
\end{pmatrix}
\begin{pmatrix}
(U \rightarrow U) \rightarrow B
\end{pmatrix}
\begin{pmatrix}
(U \rightarrow U)
\end{pmatrix}
= \\
\begin{pmatrix}
(U \rightarrow U) \rightarrow B
\end{pmatrix}
\begin{pmatrix}
(U \rightarrow U)
\end{pmatrix}
\begin{pmatrix}
(U \rightarrow U) \rightarrow B
\end{pmatrix}
\begin{pmatrix}
(U \rightarrow U)
\end{pmatrix}
\]
Example of composition

Overall composition

\[
\left(\begin{array}{c}
(U \to U) \to B
\end{array} \right) \quad ,
\left(\begin{array}{c}
(U \to U) \to B
\end{array} \right) \quad \circ
\left(\begin{array}{c}
(U \to U)
\end{array} \right) =
\left(\begin{array}{c}
B
\end{array} \right)
\]

\[
\left(\begin{array}{c}
(U \to U) \to B
\end{array} \right) \quad ,
\left(\begin{array}{c}
(U \to U) \to B
\end{array} \right) \quad \circ
\left(\begin{array}{c}
(U \to U)
\end{array} \right) =
\left(\begin{array}{c}
B
\end{array} \right)
\]

\[
\left(\begin{array}{c}
(U \to U) \to B
\end{array} \right) \quad ,
\left(\begin{array}{c}
(U \to U) \to B
\end{array} \right) \quad \circ
\left(\begin{array}{c}
(U \to U)
\end{array} \right) =
\left(\begin{array}{c}
B
\end{array} \right)
\]
Example of composition

Overall composition

\[
\left((U \rightarrow U) \rightarrow B \right) \circ \left((U \rightarrow U) \rightarrow B \right) \cong \left(B \rightarrow B \right)
\]

\[
\int \left((U \rightarrow U) \rightarrow B \right) \circ \left((U \rightarrow U) \rightarrow B \right) \cong \int \left(B \rightarrow B \right)
\]
Example of composition

Overall composition

\[
\left((U \rightarrow U) \rightarrow B \right), (U \rightarrow U) \rightarrow B \right) \circ \left(U \rightarrow U \right) = \left(B \right)
\]

\[
\left\{ (U \rightarrow U) \rightarrow B \right\} \circ \int \left(U \rightarrow U \right) = \left(B \right)
\]
Example of composition

Overall composition

\[
\left((U \to U) \to B \right) \circ \left((U \to U) \to B \right) = \left(B \right)
\]

\[
\left\{ (U \to U) \to B \left\{ ((()), (()), (tt)) \right\} \circ \left\{ U \to U \left\{ ((()), (()), (ff)) \right\} \right\} =
\]

\[
\left\{ B \right\}
\]
Example of composition

Overall composition

\[
\begin{pmatrix}
 (U \rightarrow U) \rightarrow B \\
 ((()), ()), tt)
\end{pmatrix}
\quad \circ
\quad \begin{pmatrix}
 U \rightarrow U \\
 (((), ()), ff)
\end{pmatrix}
\quad =
\quad \begin{pmatrix}
 B \\
 tt \\
 ff
\end{pmatrix}
\]
The deadlock-free lemma

Lemma

For $\sigma : A \rightarrow B$, $\tau : B \rightarrow C$ visible strategies, $q \in \sigma$ and $p \in \tau$ such that

\[(1) \quad |q| = x_A + x_B \quad \& \quad |p| = x_B + x_C ,\]

then, p and q satisfy:

\[(2) \quad \leq_q \cup \leq_p \text{ is acyclic} \]

Proof.

By descent on the justification pointers.

\footnote{9P. Baillot, V. Danos, T. Ehrhard, L. Regnier, Timeless games, CSL 1997} \footnote{10P.-A. Melliès, Asynchronous games 4: A fully complete model of propositional linear logic, LICS 2005.} \footnote{11P. Boudes, Thick subtrees, games and experiments, TLCA 2009.}
The deadlock-free lemma

Lemma

For \(\sigma : A \rightarrow B, \tau : B \rightarrow C\) visible strategies, \(q \in \sigma\) and \(p \in \tau\) such that

\[(1) \quad |q| = x_A + x_B \land |p| = x_B + x_C,\]

then, \(p\) and \(q\) satisfy:

\[(2) \quad \leq_q \cup \leq_p\ 	ext{is acyclic}\]

Proof.

By descent on the justification pointers.

Theorem

\(\int(_): CG_{vis} \rightarrow Rel\)

The deadlock-free lemma \(^9\) \(^10\) \(^11\)

Lemma

For \(\sigma : A \to B\), \(\tau : B \to C\) visible strategies, \(q \in \sigma\) and \(p \in \tau\) such that

\[(1) \quad |q| = x_A + x_B \quad \text{and} \quad |p| = x_B + x_C ,\]

then, \(p\) and \(q\) satisfy:

\[(2) \quad \leq_q \cup \leq_p \quad \text{is acyclic}\]

Proof.

By descent on the justification pointers.

Theorem

\(\int(_ _ _ _ _ __ _ _) : \text{CG}_{\text{inn}} \to \text{Rel}\)

Adding probabilities

PCF \(\rightarrow\) PPCF \(\rightarrow\) PIA

PCG\(_{\text{seq,inn}}\) \(\rightarrow\) IA \(\rightarrow\) DH

PCG\(_{\text{seq}}\) \(\rightarrow\) PRel

CG\(_{\text{seq,inn}}\) \(\rightarrow\) HO-Inn

+probabilities \(\rightarrow\) +parallel innocence
+confidence \(\rightarrow\) +confidence
+state \(\rightarrow\) +parallel innocence
The probabilistic relational model \(^{12}\)

Definition

\(\textbf{PRel} \) has **sets** as objects, and as morphisms from \(A \) to \(B \), **matrices**

\[
(\alpha_{a,b})_{(a,b) \in A \times B} \in \mathbb{R}_{+}^{A \times B}
\]

with coefficients in \(\mathbb{R}_{+} \) the completed positive reals.

Definition

\[
(\beta \circ \alpha)_{a,c} = \sum_{b \in B} \alpha_{a,b} \cdot \beta_{b,c}
\]

Theorem (Ehrhard, Tasson, Pagani)

\(\textbf{PRel} \) is fully abstract for \(\text{PPCF} \).

Theorem

PCG_{inn} is intensionally fully abstract for PPCF.

Proof.

If $\sigma : A \rightarrow B$ and $x_A \in \int A$, $x_B \in \int B$, we define

$$(\int \sigma)_{x_A, x_B} = \sum_{\substack{q \in \sigma \mid |q| = x_A + x_B}} \sigma(q)$$

This yields a functor

$$\int(-) : \text{PCG}_{\text{inn}} \rightarrow \text{PRel}$$

preserving the interpretation.
The sequential face

PCF \(\rightarrow \) PPCF

\(\rightarrow \) PCG\textsubscript{seq,inn} \(\rightarrow \) PIA

+probability

+parallel innocence

+state

+confidence

CG\textsubscript{seq,inn}

PRel

CG\textsubscript{seq}

AM

HO-Inn

DH